Математическое моделирование процессов резания


Заключение - часть 2


Основные понятия регрессионного анализа [20, С.213-226; 30, С.57-90]. Аппроксимация экспериментальных данных линейными и полиномиальными зависимостями - преимущества и недостатки [19, С.260-263,281-285]. Алгоритм аналитической идентификации моделей множественной линейной и полиномиальной регрессии [19, С.306-326; 32, С.214-220]. Обоснование используемой функции ошибки. Способы оценки точности регрессионных моделей. Оценка значимости и адекватности уравнения регрессии [3, С.222-228; 19, С.265-271,286-292; 36, С.109-111]. Алгоритм и математический смысл проверки значимости уравнения регрессии [19, С.265-276,285-293; 36, С.108-115].

4.                  Основы теории планирования эксперимента. Общее понятие о планировании экспериментов. Понятие и область применения однофакторного и многофакторного экспериментов. Алгоритм обработки результатов эксперимента. [13, С.246-259; 36, С.145-189]

5.                  Автоматизированная система научных исследований процессов резания и инструментов. Обобщенная функциональная схема АСНИ. Обеспечение АСНИ: методическое, техническое, программное, информационное, метрологическое, организационное. Аппаратура для исследований инструмента. Датчики и измерительные преобразователи. Использование АСНИ как подсистемы ГПС [5, С.274-321,337-348; 27, С.211-363; 36, С.243-256].

Как можно было убедиться при знакомстве с курсом, математическое моделирование является достаточно общей и весьма сложной областью прикладной математики, в которой используются достижения и методы практически всех математических наук. Очевидно что математическое моделирование представляет собой не самостоятельную научную дисциплину, а комплекс методов математического представления и исследования реальных физических объектов, процессов и систем.

Можно говорить о том, что именно посредством математического моделирования реализуется основная цель прикладной математики - математическое осмысление действительности [14, С.9].




Начало  Назад  Вперед