Интеллектуальные информационные системы


. Моделирование иерархических структур обработки информации - часть 2


Примечание: в таблице 34 представлена именно логическая

структура данных, т.е. в реальных базах данных нет записей, содержащих информацию о влиянии рецепторов n-го слоя на нейроны слоев, номера которых не равны n.

Этот вариант обладает преимуществами первых двух и преодолевает их недостатки. В нем применяется следующий итерационный алгоритм послойного расчета, где n={1, 2, …, N}, N – количество слоев нейронной сети:

Шаг n: расчет весовых коэффициентов n-го слоя, идентификация объектов обучающей выборки в нейронах n-го слоя, если слой (n+1) существует, то занесение в обучающую выборку в качестве свойств объектов (n+1)-го слоя результатов их идентификации в нейронах n-го слоя.

Таблица 34 – ЛОГИЧЕСКАЯ СТРУКТУРА ДАННЫХ, СООТВЕТСТВУЮЩАЯ  ТРЕХСЛОЙНОЙ НЕЛОКАЛЬНОЙ НЕЙРОННОЙ СЕТИ

Рецепторы – факторы,

влияющие на поведение

объекта управления

Нейроны  - будущие состояния объекта управления

Дифференцирующая способность входного сигнала

Нейроны

1-го слоя:

психологические

качества

сотрудников

Нейроны

2-го слоя:

успешность деятельности

сотрудника

Нейроны

3-го слоя:

успешность

 деятельности

фирмы

Рецепторы 1-го слоя:

ответы сотрудников

на вопросы анкеты

Весовые

коэффициенты

1-го слоя

– – –

– – –

 

Рецепторы 2-го слоя:

психологические

качества сотрудников

– – –

Весовые

коэффициенты

2-го слоя

– – –

 

Рецепторы 3-го слоя:

успешность деятельности сотрудника

– – –

– – –

Весовые

коэффициенты

3-го слоя

 

Степень

обученности

нейрона

 

 

 

Степень обученности нейронной сети




Начало  Назад  Вперед