Интеллектуальные информационные системы

         

Некоторые свойства математической модели (сходимость, адекватность, устойчивость и др.)


Под сходимостью семантической информационной модели в данной работе понимается:

а) зависимость  информативностей факторов (в матрице информативностей) от объема обучающей выборки;

б) зависимость адекватности модели (интегральной и дифференциальной валидности) от объема обучающей выборки.

Для измерения сходимости в смыслах "а" и "б" в инструментарии СК-анализа – системе "Эйдос" реализован специальный исследовательский режим.

Под адекватностью модели понимается ее внутренняя и внешняя дифференциальная и интегральная валидность. Понятие валидности является уточнением понятия адекватности, для которого определены процедуры количественного измерения, т.е. валидность – это количественная адекватность. Это понятие количественно отражает способность модели давать правильные результаты идентификации, прогнозирования и способность вырабатывать правильные рекомендации по управлению. Под внутренней валидностью понимается валидность модели, измеренная после синтеза модели путем идентификации объектов обучающей выборки. Под внешней валидностью понимается валидность модели, измеренная после синтеза модели путем идентификации объектов, не входящих в обучающую выборку. Под дифференциальной валидностью модели понимается достоверность идентификации объектов в разрезе по классам. Под интегральной валидностью средневзвешенная дифференциальная валидность. Возможны все сочетания: внутренняя дифференциальная валидность, внешняя интегральная валидность и т.д. (таблица 20).


Таблица 20 – К ОПРЕДЕЛЕНИЮ ПОНЯТИЯ ВАЛИДНОСТИ

Внутренняя валидность



Внешняя валидность

Дифференциальная валидность

Валидность модели, измеренная после синтеза модели путем идентификации объектов обучающей выборки в разрезе по классам

Валидность модели, измеренная после синтеза модели путем идентификации объектов, не входящих в обучающую выборку в разрезе по классам

Интегральная валидность

Средневзвешенная по всем классам достоверность идентификации объектов обучающей выборки

Средневзвешенная по всем классам достоверность идентификации объектов, не входящих в обучающую выборку

Под устойчивостью модели понимается ее способность давать незначительные различия в прогнозах и рекомендациях по управлению при незначительных различиях в исходных данных для решения этих задач.



Содержание раздела