Интеллектуальные информационные системы


Оценка адекватности модели. Зависимость достоверности прогнозирования от разброса точечных прогнозов - часть 2


Если же разброс точечных прогнозов велик, то средневзвешенному прогнозу доверять нельзя, т.к. система находится в бифуркационном состоянии, на котором ее дальнейшее поведение неопределенно, т.к. закономерности, управляющие этим будущим поведением только формируются и еще не определены.

Из сравнения рисунков 90 и 91 видно, что погрешность прогнозирования и разброс точечных прогнозов сильно корреллируют. Таким образом, разброс точечных прогнозов может быть использован как количественный измеритель степени неопределенности состояния системы и позволяет оценить степень близости этого состояния к "детерминистскому" или "бифуркационному". А так как разброс точечных прогнозов может быть измерен за долго до наступления прогнозируемого состояния системы, то это позволяет прогнозировать переход системы в бифуркационное состояние.

Здесь необходимо особо отметить, что в предложенной математической модели и технологии АСК-анализа разброс точечных прогнозов не увеличивается пропорционально увеличению длительности периода прогнозирования, как доверительный интервал в статистических моделях, а является именно функцией степени объективной неопределенности состояния системы и изменяется сложным образом.

Кроме того, в системе "Эйдос" реализован режим автоматического удаления из модели классов, по которым в сформированной модели оказалась низкая достоверность идентификации и прогнозирования, после чего адекватность модели резко возрастают. Этот режим аналогичен использованию для этих целей доверительных интервалов в процедуре предсказания с помощью регрессионного анализа.

Таким образом, развитые методика, технология и программный инструментарий АСК-анализа позволяют либо надежно прогнозировать развитие активного объекта, либо надежно прогнозировать его переход в бифуркационное состояние, что само по себе также чрезвычайно ценно.




Начало  Назад  Вперед