Интеллектуальные информационные системы


Постановка задачи и пути ее решения - часть 2


Поэтому остается выполнить 2-е условие, а именно: разработать типовую методику использования баз данных репозитария UCI для оценки качества математических моделей систем искусственного интеллекта, что и является основной задачей данного раздела.

На первый взгляд решение этой задачи является относительно несложным, т.к. требует в основном знания и умения использования стандартных возможностей Internet-броузера, Word и Excel. Однако как показывает опыт, это вполне может представлять определенную сложность из-за большого числа операций преобразования формы информации и принципиальной неполной формализуемости этого процесса. Поэтому предмет данной данного раздела достаточно актуален.

Сформулируем основные требования к методикам, предназначенным для этих целей, а также критерии их оценки и сравнения:

1. Высокая степень автоматизированности, т.е. минимизация затрат ручного труда.

2. Высокая скорость преобразования информации

и, как следствие, – несущественность ее объема.

3. Высокая достоверность преобразования, т.е. отсутствие ошибок.

Однако в литературе и в Internet не приводятся методики аналогичного назначения. Исходя из этого можно предположить, что в основном это преобразование осуществляется вручную, что не соответствует сформулированным требованиям ни по одному из приведенных критериев.

Поэтому предлагается методика, свободная от указанных ограничений. Основная идея этой методики состоит в том, что преобразование формы представления исходных данных из HTML-формата непосредственно в базы данных системы осуществляется в два основных этапа:

– на 1-м этапе с использованием стандартных возможностей Word и Excel осуществляется преобразование исходных данных из HTML-формата в промежуточные DBF-таблицы;

– на 2-м этапе с помощью специально разработанного программного интерфейса осуществляется преобразование исходных данных из промежуточных DBF-таблиц в стандарт баз данных используемой системы искусственного интеллекта.

Рассмотрим данную методику подробнее на примере преобразования баз данных репозитария UCI по примеру ZOO-database в стандарт баз данных универсальной когнитивной аналитической системы "Эйдос" [64].




Начало  Назад  Вперед