Интеллектуальные информационные системы


Решение задачи "Разработка алгоритмов решения основных задач АСУ" - часть 10


/p>

В приведенной когнитивной диаграмме наглядно в графической форме показано сравнение классов (обобщенных образов) "Малиновка" и "Птица" разных уровней общности по их атрибутам (признакам). Как видно из диаграммы, в ней:

1. Все атрибуты имеют одинаковый вес, т.е. не учитывается, что некоторые атрибуты более важны для идентификации класса, чем другие. Это соответствует предположению, что этот вес равен по модулю 1 для всех атрибутов.

2. Все признаки имеют одинаковый знак, т.е. они все характерны для классов и нет атрибутов нехарактерных. Это соответствует предположению,  что вес всех признаков положительный, т.е. все признаки вносят вклад в сходство и нет признаков, вносящих вклад в различие.

3. Классы сравниваются только по тем атрибутам, которые есть одновременно у них обоих, т.е. признаки, имеющиеся у обоих классов вносят вклад в сходство классов, а признаки, которые есть только у одного из классов не вносят никакого вклада ни в сходство классов, ни в различие. Это соответствует предположению, что атрибуты ортонормированы, т.е. корреляция их друг с другом равна 0 (атрибуты семантически не связаны).

Каждое из этих трех допущений является довольно сильным и желательно их снять и, тем самым, обобщить принцип построения когнитивных диаграмм, приведенный в данном примере.

Но это означает, что данный подход не позволяет сравнивать классы, описанные различными, т.е. непересекающимися наборами признаков. Но даже если общие признаки и есть, то невозможность учета вклада остальных признаков является недостатком классического подхода, так как из содержательного анализа связей неконтролируемо исключается потенциально существенная информация. Таким образом, классический подход имеет ограниченную применимость при решении задачи №1. Для решения задачи №2 подход, основанный на формуле (3.44), вообще не применим, так как различные уровни системной организации классов образованы различными признаками и, следовательно, между уровнями не будет ни одной одно–однозначной связи.




Начало  Назад  Вперед