Интеллектуальные информационные системы


Решение задачи "Разработка алгоритмов решения основных задач АСУ" - часть 17


1. Сопоставимы индивидуальные количества информации, содержащейся в признаках о принадлежности к классам.

2. Сопоставимы величины, рассчитанные для одного объекта и разных классов.

3. Сопоставимы величины, рассчитанные для разных объектов и разных классов.

Очевидно, для решения всех этих вопросов необходимо дать точное и полное определение самого термина "сопоставимость".

Считается, что величины сопоставимы, если существует некоторая количественная шкала для измерения этих величин.

Таким образом, в нашем случае сопоставимость обеспечивается, если на шкале определены направление и единица измерения, а также есть абсолютный минимум (ноль) или максимум.

Докажем теоремы о выполнении условий сопоставимости для упрощенной и полной информационных моделей объектов и классов распознавания. Для этого рассмотрим вышеперечисленные необходимые и достаточные условия сопоставимости для упрощенной и полной информационных моделей.

Теорема-1: Индивидуальные количества информации, содержащейся в признаках объекта о принадлежности к классам, сопоставимы между собой.

В упрощенной информационной модели класса и информационной модели объекта принято, что все признаки имеют одинаковый вес, который равен 1, если признак есть у класса, и 0, если его нет. Уже одним этим обеспечивается сопоставимость индивидуальных количеств информации в упрощенной модели.

В полной модели количество информации рассчитывается в соответствии с модифицированной формулой Харкевича (3.28). Таким образом, в полной информационной модели класса для каждого признака известно, какое количество информации о принадлежности к данному классу он содержит. Это количество информации может быть положительным, нулевым и отрицательным, но не может превосходить некоторой максимальной величины, определяемой количеством классов распознавания: I=Log2W (мера Хартли), где W – количество классов распознавания. Следовательно, для полной информационной модели сопоставимость индивидуальных количеств информации также обеспечивается, так как для них применима шкала отношений.




Начало  Назад  Вперед