Интеллектуальные информационные системы


Решение задачи "Разработка алгоритмов решения основных задач АСУ" - часть 18


Это означает, что индивидуальные количества информации можно суммировать и ввести интегральный критерий как аддитивную меру от индивидуальных количеств информации, что и требовалось доказать.

Теорема-2: Величины суммарной информации, рассчитанные для одного объекта и разных классов, сопоставимы друг с другом.

В упрощенной информационной модели вариант расстояния Хэмминга Hj, в котором учитываются только совпадения единиц (т.е. существующих признаков), для кодовых слов объекта и класса равно:

(3. 53)

где     

– кодовое слово (профиль, массив–локатор) j–го класса;

Li  – кодовое слово (профиль, массив–локатор) объекта.

Пусть длина кодового слова (количество признаков) равна А. Длины кодовых слов объекта и классов одинаковы. Признаки могут принимать значения {0,1}. Тогда из этих условий и выражения (3.53) следует:

(3. 54)

Но выражение (3.54) является математическим определением шкалы отношений, что означает полную сопоставимость предложенной меры сходства для упрощенной информационной модели одного объекта и многих классов. Для обобщенной информационной модели этот вывод сохраняет силу, т.к. в этой модели информация в соответствии с выражением (3.28) измеряется в единицах измерения – битах, определенных на шкале измерения информации, и на этой шкале имеется 0 и теоретический максимум, определяемый в соответствии с выражением Хартли. В полной информационной модели мера сходства объекта с классом

имеет вид, определяемый выражением (3.39).

Очевидно, величина

 нормирована:

(3. 55)

что и доказывает применимость шкалы отношений и полную сопоставимость меры сходства для полной информационной модели одного объекта и многих классов.

Это значит, что можно сравнивать меры сходства данного объекта с каждым из классов и ранжировать классы в порядке убывания сходства с данным объектом , что и требовалось доказать.

Теорема-3: Величины суммарной информации, рассчитанные для разных объектов и разных классов, а также классов и классов, признаков и признаков, взаимно-сопоставимы.




Начало  Назад  Вперед