Интеллектуальные информационные системы


Решение задачи "Разработка алгоритмов решения основных задач АСУ" - часть 19


Очевидно, величина

, рассчитанная по формуле (3.39) для различных объектов и классов нормирована:

(3. 56)

что и доказывает применимость шкалы отношений и полную сопоставимость мер сходства для полной информационной модели многих объектов и многих классов.

Это значит, что можно сравнивать меры сходства различных объектов с классами распознавания и делать выводы о том, что одни объекты распознаются лучше, а другие хуже на данном наборе классов и признаков, что и т.д.

Аналогичные рассуждения верны и для сравнения векторов классов друг с другом, а также векторов признаков друг с другом, что позволяет применить модели кластерно-конструктивного анализа и алгоритмы построения семантических сетей, что и требовалось доказать.

Теорема-4: Неметрический интегральный критерий сходства, основанный на модифицированной формуле А.Харкевича и обобщенной лемме Неймана-Пирсона, аддитивен.

Рассмотрим информационные модели распознаваемого объекта и классов распознавания, т.е. модели, основанные на теории кодирования – декодирования и расстоянии Хэмминга (кодовое расстояние) в качестве критерия сходства. Эта модель является упрощенной, но достаточно адекватной для решения вопроса об аддитивности меры сходства объектов и классов.

Информационная модель распознаваемого объекта представляет собой двоичное слово, каждый разряд которого соответствует определенному признаку. Если признак есть у распознаваемого объекта, то соответствующий разряд имеет значение 1, если нет – то 0. Двоичное слово с установленными в 1 разрядами, соответствующими признакам распознаваемого объекта, называется его кодовым словом.

Упрощенная информационная модель класса распознавания есть двоичное слово, каждый разряд которого соответствует определенному признаку. Соответствие между двоичными разрядами и признаками для классов то же самое, что и для распознаваемых объектов. Если признак есть у класса, то соответствующий разряд имеет значение 1, если нет – то 0. Двоичное слово с установленными в 1 разрядами, соответствующими признакам класса, называется его кодовым словом.




Начало  Назад  Вперед