Интеллектуальные информационные системы


Решение задачи "Разработка алгоритмов решения основных задач АСУ" - часть 9


В разделе 3.1. получено выражение (3.28) для расчета количества информации в i–м признаке о принадлежности некоторого конкретного объекта к j–му классу (плотность информации), которое имеет вид:

(3.28)

Аналогично, формула для количества информации в k–м признаке о принадлежности к L–му классу имеет вид:

(3. 42)

Вклад некоторого признака i в сходство/различие двух классов j и l равен соответствующему слагаемому корреляции образов этих классов, т.е. просто произведению информативностей

(3. 43)

Классический коэффициент корреляции Пирсона, количественно определяющий степень сходства векторов двух классов: j и l, на основе учета вклада каждой связи, образованной i–м признаком, рассчитывается по формуле

(3. 44)

где:

– средняя информативность признаков j–го класса;

– средняя информативность признаков L–го класса;

– среднеквадратичное отклонение информативностей признаков j–го класса;

– среднеквадратичное отклонение информативностей признаков L–го класса.

Проанализируем, насколько классический коэффициент корреляции Пирсона (3.62) пригоден для решения важных задач:

– содержательного сравнения классов;

– изучения внутренней многоуровневой структуры класса.

Упростим анализ, считая, что средние информативности признаков по обоим классам близки к нулю, что при достаточно больших выборках (более 400 примеров в обучающей выборке) практически близко к истине.

Каждое слагаемое (3.43) суммы (3.44) отражает связь между классами, образованную одним i–м признаком. I–я связь существует в том и только в том случае, если i–й признак есть у обоих классов. Поэтому эти связи уместно называть одно–однозначными.

Этот подход можно назвать классическим для когнитивного анализа. Рассмотрим когнитивную диаграмму, приведенную на стр. 222 работы основной работы классика когнитивной психологии Р.Солсо (Когнитивная психология. /Пер. с англ. - М.: Тривола, 1996. - 600с.) (рисунок 31).

 

Рисунок 31. Когнитивная диаграмма

из классической работы Роберта Солсо.

<


Начало  Назад  Вперед