Интеллектуальные информационные системы


Резюме


1. Сформулированы требования к математической модели и к численной мере. Затем на их основе обоснован выбор базовой численной меры. Для этого рассмотрены три вида информации: абсолютная, относительная и аналитическая информация. Предпочтение отдано аналитической форме информации, к которой принадлежат относительные вероятности, относительные проценты и количество информации. Вместо традиционных мер, основанных на понятии "стоимости" и "полезности" предложено использовать информационную меру. Рассмотрены различные аспекты применения теории информации для анализа процесса труда и средств труда как информационных систем. Показано, что принятие решения об управляющем воздействии есть обратный процесс по отношению к идентификации и прогнозированию, т.е. познанию. Установлена связь количества (синтаксиса) и качества (содержания, семантики) информации, записываемой в структуре предмета труда, с меновой и потребительной стоимостью. Сформулирована информационная теория стоимости, в которой информация рассматривается как сущность стоимости и как "первичный" и по сути единственный товар. Рассмотрены вопросы определения стоимости и амортизация интеллектуальных систем и баз знаний. Показано, что их стоимость как генераторов информации  возрастает в процессе эксплуатации. С позиций теории информации раскрыт фундаментальный источник экономической эффективности АСУ и систем интеллектуальной обработки данных: понижение энтропии объекта управления как приемника сообщений в результате получения управляющей информации. Сделан вывод о целесообразности выбора в качестве базовой численной меры количества информации. Поставлена задача выбора или конструирования конкретной численной меры, основанной на понятии информации.

2. В классической теории информации Шеннона, созданной на основе обобщения результатов Больцмана, Найквиста и Хартли, само понятие информации определяется на основе теоретико-множественных и комбинаторных представлений путем анализа поведения классического макрообъекта, который может переходить только в четко фиксированные альтернативные редуцированные состояния.


Начало  Назад  Вперед