Интеллектуальные информационные системы


Резюме


Предлагается модель нелокального нейрона, являющаяся обобщением классической модели Дж. Маккалоки и У. Питтса. Суть нелокальности данной модели состоит в том, что весовые коэффициенты каждого нейрона зависят не только от нейронов, прямо или косвенно соединенных с ним синаптически, но и от всех остальных нейронов сети, не затрагиваемых при обратном распространении ошибки от данного нейрона. Предлагается новый класс нейронных сетей: "Нелокальные интерпретируемые нейронные сети прямого счета" (нелокальные нейронные сети – ННС). Организация ННС обеспечивает один из вариантов решения традиционных для нейронных сетей проблем:

– содержательной интерпретации смысла интенсивности входных сигналов и весовых коэффициентов ("проблема интерпретируемости весовых коэффициентов");

содержательной интерпретации и обоснования аддитивности аргумента и вида активационной (передаточной) функции нейрона ("проблема интерпретируемости передаточной функции");

"Комбинаторного взрыва" при определении структуры связей нейронов, подборе весовых коэффициентов и передаточных функций ("проблема размерности");

– "проблема линейной разделимости классов" в случае отсутствия вариабельности весовых коэффициентов нейронов, соответствующих тем или иным классам.

Математическая модель ННС основана на предложенной автором системной теории информации и семантической информационной модели автоматизированного системно-когнитивного анализа (АСК-анализ), и в отличие от известных нейронных сетей, обеспечивают автоматизацию всех 10 базовых когнитивных операций, образующих "когнитивный конфигуратор". Предложены не только математическая модель, но также и соответствующий численный метод (включая алгоритмы и структуры данных), а также программный инструментарий нелокальных нейронных сетей (универсальная когнитивная аналитическая система "Эйдос" версии 12.5), успешно апробированные в ряде предметных областей. Данная система обеспечивает неограниченное количество слоев ННС при максимальном количестве весовых коэффициентов в слое до 16 миллионов (в текущей версии), до 4000 выходных нейронов, а также автоматическую визуализацию и запись в виде графических файлов сформированных моделей нелокальных нейронов и Паретто-подмножеств нелокальной нейронной сети.




Начало  Назад  Вперед



Книжный магазин