Интеллектуальные информационные системы

         

Специальный программный инструментарий СК-анализа – система "Эйдос"


На таблице 26 показана обобщенная схема когнитивной аналитической системы "Эйдос", которая реализует математическую модель и численный метод системно-когнитивного анализа и, таким образом, является его инструментарием.

В состав данной системы входит 7 подсистем.

Первые 3 подсистемы являются инструментальными, т.е. позволяют осуществлять синтез и адаптацию модели.

Остальные 4 подсистемы обеспечивают идентификацию, прогнозирование и кластерно-конструктивный анализ модели, в т.ч. верификацию модели и выработку управляющих воздействий.

Система "Эйдос" является довольно большой системой: распечатка ее исходных текстов 6-м шрифтом составляет около 800 листов, она генерирует 54 графических формы (двумерные и трехмерные) и 50 текстовых форм. На данную систему и системы окружения получено 8 свидетельств РосПатента РФ.

Таблица 26 – ОБОБЩЕННАЯ СТРУКТУРА УНИВЕРСАЛЬНОЙ

КОГНИТИВНОЙ АНАЛИТИЧЕСКОЙ СИСТЕМЫ "ЭЙДОС"

Подсистема

Режим

Функция

Операция



1.

Словари

1. Классификационные шкалы и градации

2. Описательные шкалы (и градации)

3. Градации описательных шкал (признаки)

4. Иерархические уровни систем

1. Уровни классов

2. Уровни признаков

5. Программные интерфейсы для импорта данных

1. Импорт данных из TXT-фалов стандарта DOS-текст

2. Импорт данных из DBF-файлов стандарта проф. А.Н.Лебедева

3. Импорт из транспонированных DBF-файлов проф. А.Н.Лебедева

4. Генерация шкал и обучающей выборки RND-модели

5. Генерация шкал и обучающей выборки для исследования чисел

6. Транспонирование DBF-матриц исходных данных

6. Почтовая служба по НСИ

1. Обмен по классам

2. Обмен по обобщенным признакам

3. Обмен по первичным признакам

7. Печать анкеты

2.

Обучение

1. Ввод–корректировка обучающей выборки

2. Управление обучающей выборкой

1. Параметрическое задание объектов для обработки

2. Статистическая характеристика, ручной ремонт

3. Автоматический ремонт обучающей выборки

3. Пакетное обучение системы распознавания

1. Накопление абсолютных частот

2. Исключение артефактов (робастная процедура)

3. Расчет информативностей признаков

4. Расчет условных процентных распределений

5. Автоматическое выполнение режимов 1–2–3–4

6. Измерение сходимости и устойчивости модели

1. Сходимость и устойчивость СИМ

2. Зависимость валидности модели от объема обучающей выборки

4. Почтовая служба по обучающей информации

3.

Оптимизация

1. Формирование ортонормированного базиса классов

2. Исключение признаков с низкой селективной силой

3. Удаление классов и признаков, по которым недостаточно данных

4.

Распознавание

1. Ввод–корректировка распознаваемой выборки

2. Пакетное распознавание

3. Вывод результатов распознавания

1. Разрез: один объект – много классов

2. Разрез: один класс – много объектов

4. Почтовая служба по распознаваемой выборке

5.

Типология

1. Типологический анализ классов распознавания

1. Информационные (ранговые) портреты (классов)

2. Кластерный и конструктивный анализ классов

1 Расчет матрицы сходства образов классов

2. Генерация кластеров и конструктов классов

3. Просмотр и печать кластеров и конструктов

4. Автоматическое выполнение режимов: 1,2,3

5. Вывод 2d семантических сетей классов

3. Когнитивные диаграммы классов

2. Типологический анализ первичных признаков

1. Информационные (ранговые) портреты признаков

2. Кластерный и конструктивный анализ признаков

1. Расчет матрицы сходства образов признаков

2. Генерация кластеров и конструктов признаков

3. Просмотр и печать кластеров и конструктов

4. Автоматическое выполнение режимов: 1,2,3

5. Вывод 2d семантических сетей признаков

3. Когнитивные диаграммы признаков

6. Анализ

1. Оценка достоверности заполнения объектов

2. Измерение адекватности семантической информационной модели

3. Измерение независимости классов и признаков

4. Просмотр профилей классов и признаков

5. Графическое отображение нелокальных нейронов

6. Отображение Паретто-подмножеств нейронной сети

7. Классические и интегральные когнитивные карты

<
Продолжение таблицы 26

Подсистема

Режим

Функция

Операция

7.

Сервис

1. Генерация (сброс) БД

1. Все базы данных

2. НСИ

1. Всех баз данных

2. БД классов

3. БД первичных признаков

4. БД обобщенных признаков

3. Обучающая выборка

4. Распознаваемая выборка

5. Базы данных статистики

2. Переиндексация всех баз данных

3. Печать БД абсолютных частот

4. Печать БД условных процентных распределений

5. Печать БД информативностей

6. Интеллектуальная дескрипторная информационно–поисковая система


Содержание раздела