Интеллектуальные информационные системы


Сравнение, идентификация и прогнозирование - часть 2


(3. 68)

где:

I(j) – интегральный критерий сходства массива-локатора, описывающего состояние объекта, и j-го класса, рассчитываемый согласно выражения (3.39):

(3.39)

I(i,j) – вектор обобщенного образа j-го класса, координаты которого рассчитываются в соответствии с системным обобщением формулы Харкевича (3.28):

(3.28)

Примечание: обозначения I(i,j) и Iij, и т.п. эквивалентны. Смысл всех переменных, входящих в выражения (3.28) и (3.39) раскрыт в разделе 3.1.3 данной работы.

При дальнейшем развитии данной аналогии естественно возникают вопросы: о полноте, избыточности и ортонормированности системы векторов классов как функций, по которым будет вестись разложение вектора объекта; о сходимости, т.е. вообще возможности и корректности такого разложения.

В общем случае вектор объекта совершенно не обязательно должен разлагаться в ряд по векторам классов таким образом, что сумма ряда во всех точках точно совпадала со значениям исходной функции. Это означает, что система векторов классов может быть неполна по отношению к профилю распознаваемого объекта, и, тем более, всех возможных объектов.

Предлагается считать не разлагаемые в ряд, т.е. плохо распознаваемые объекты, суперпозицией хорошо распознаваемых объектов ("похожих" на те, которые использовались для формирования обобщенных образов классов), и объектов, которые и не должны распознаваться, так как объекты этого типа не встречались в обучающей выборке и не использовались для формирования обобщенных образов классов, а также не относятся к представляемой обучающей выборкой генеральной совокупности.

Нераспознаваемую компоненту можно рассматривать либо как шум, либо считать ее полезным сигналом, несущим ценную информацию о еще не исследованных объектах интересующей нас предметной области (в зависимости от целей и тезауруса исследователей). Первый вариант не приводит к осложнениям, так как примененный в математической модели алгоритм сравнения векторов объектов и классов, основанный на вычислении нормированной корреляции Пирсона (сумма произведений), является весьма устойчивым к наличию белого шума в идентифицируемом сигнале.


Начало  Назад  Вперед