Интеллектуальные информационные системы


Задачи формализации базовых когнитивных операций системного анализа - часть 3


1. Обладать высокой степенью адекватности предметной области, т.е. высокой валидностью, при различных объемах выборки, как при очень малых, так и при средних и очень больших.

2. Иметь обоснованную, четкую, ясную и интуитивно понятную интерпретацию.

3. Быть нетрудоемкой в вычислительном отношении.

4. Обеспечивать корректное вычисление меры сходства для пространств с неортонормированным базисом.

5. Обеспечивать высокую достоверность и устойчивость идентификации при неполных (фрагментарных) и зашумленных данных.

Определение идентификационной и прогностической ценности атрибутов

Не все факторы имеют одинаковую ценность для решения задач идентификации, прогнозирования и управления. Традиционно считается, что факторы имеют одинаковую ценность только в тех случаях (обычно в психологии), когда определить их действительную ценность не представляется возможным по каким-либо причинам.

Для достижения целей, поставленных в данном исследовании, необходимо решить проблему определения ценности факторов, т.е. разработать математическую модель и алгоритм, которые допускают программную реализацию и обеспечивают на практике определение идентификационной и прогностической ценности факторов.

Ортонормирование семантических пространств классов и атрибутов (Парето-оптимизация)

Если не все факторы имеют одинаковую ценность для решения задач идентификации, прогнозирования и управления, то возникает проблема исключения из системы факторов тех из них, которые не представляют особой ценности.

Удаление малоценных факторов вполне оправданно и целесообразно, т.к. сбор и обработка информации по ним в среднем связана с такими же затратами времени, вычислительных и информационных ресурсов, как и при обработке ценных факторов. В этом состоит идея Парето-оптимизации.

Однако это удаление должно осуществляться при вполне определенных граничных условиях, характеризующих результирующую систему:

– адекватность модели;

– количество признаков на класс;

– суммарное количество градаций признаков в описательных шкалах.

В противном случае удаление факторов может отрицательно сказываться на качестве решения задач. На практике проблема реализации Парето-оптимизации состоит в том, что факторы вообще говоря коррелируют друг с другом и поэтому их ценность может изменяться при удалении любого из них, в том числе и наименее ценного. Поэтому просто взять и удалить наименее ценные факторы не представляется возможным и необходимо разработать корректный итерационный вычислительный алгоритм обеспечивающий решение этой проблемы при заданных граничных условиях.




Начало  Назад  Вперед