Иллюстрированный самоучитель по Matlab

         

Функции обработки множеств


Множество —

первичное понятие математики, не имеющее четкого определения. Под множеством подразумевается совокупность некоторых объектов, например книг в библиотеке, людей в зале или элементов вектора. В этом разделе приводятся некоторые функции для обработки множеств, представленных векторами. Они широко используются при анализе и обработке данных.

 intersect(a.b) — возвращает пересечение множеств для двух векторов а и b, т. е., общие элементы векторов а и b. Результирующий вектор отсортирован по возрастанию. Если входные массивы не являются векторами, то они рассматриваются как совокупность векторов-столбцов а=а(:) или b=b(:);

intersect(a,b, 'rows') — возвращает строки, общие для а и b, когда а и b  представляют собой матрицы с одинаковым числом столбцов;

 [c.ia.ib] = intersect(a.b) — также возвращает вектор-столбец индексов ia и ib. но так, что с = a(ia) и с = b(ib) (или с = a(ia.:) ис = b(ib.:)).

Пример:

» А = [1 7 2 6]; В = [7 2 3 4 6 1]; 

» [c,ia,ib] = intersect(А,В)

1    2    6    7

ia =

1    3    4    2 

ib = 

6    2    5    1

 ismember(a.S) — возвращает вектор той же длины, что и исходный а, содержащий логические единицы на месте тех элементов вектора а, которые принадлежат множеству S, и логические нули на месте тех элементов вектора а, которые не принадлежат множеству S;

ismember (А. S.' rows') — возвращает вектор, содержащий логические единицы там, где строки матрицы А являются также строками матрицы S, и логические нули в остальных позициях. А и S должны быть матрицами с одним числом столбцов.

Пример:



» set = [0 1 3 5 7 9 11 15 17 19]; 

» а=[1 2345678]; 

» k = ismember(a.set) 

k =

1    0    1    0    1    0    1    0


setdiff(a.b) — возвращает разность множеств, т. е., те элементы вектора а, которые не содержатся в векторе b. Результирующий вектор сортируется по возрастанию;

setdiff(a,b, 'rows') — возвращает те строки из матрицы а, которые не содержатся в матрице Ь. Матрицы а и b должны иметь одинаковое число столбцов; 

 [c,i] = setdiff(...) — возвращает также вектор индексов 1, такой что с = а(i)

или с = а (i,;).

Если входной массив а является матрицей, то он расценивается как вектор-столбец а(:).

Пример:

» а=[2 3 5 7 8 9 10 13 20]; 

» b=[1456894] 

» с = setdiff(a.b) 

с=

2 3 7 10 13 20

 setxor(a.b) — исключающее ИЛИ для векторов а и b. Результирующий вектор отсортирован;

setxor(a,b, 'rows') — возвращает строки, которые не являются пересечениями матриц а и b. Матрицы а и b должны иметь одинаковое число столбцов;

[c.ia.ib] = setxor(...) — возвращает также векторы индексов ia и ib так, что с является отсортированной комбинацией элементов с = а(iа)ис = b(ib) или для комбинаций строк с = а(iа,:)ис = b(ib.;).

Если массив а является матрицей, то он расценивается как вектор-столбец а(:).

Пример:

» а = [-1 0 1 Inf -Inf NaN]; 

» b = [-2 pi 0 Inf]; 

» с = setxor(a.b)

с =

 -Inf -2.0000-1.00001.0000 3.1416 NaN

union(a ,b) — возвращает вектор объединенных значений из а и b без повторяющихся элементов. Результирующий вектор сортируется в порядке возрастания;

union(a,b, 'rows') — возвращает объединенные строки из а и b, не содержащие повторений (а и b — это матрицы с одинаковым числом столбцов);

[c.ia.ib] = unionL.) — дополнительно возвращает i а и i b — векторы индексов, такие что с = a(ia) и c=b(1b), или, для объединенных строк, с = а(1а.:)ис = b(ib,:). Невекторный массив а расценивается как вектор-столбец а(:). Пример:

» а=[2,4,-4,9,0]:b=[2,5,4]: 

» [c,ia,ib]=union(a,b) 

с =

-4    0    2    4    5    9 



ia =

3    5    4 

ib =

1     3     2

unique(a) — возвращает значения элементов из а, не содержащие повторений. Результирующий вектор сортируется в порядке возрастания. Невекторный массив расценивается как вектор-столбец а=а(: );

unique(a, 'rows') — возвращает уникальные строки а;

[b.i ,j] = unique(...) — дополнительно возвращает i и j — векторы индексов, такие что b = a(i)na = b(j) (или b = а(1,:) иа = b(j.:)).

Примеры:

» b=[-2,3,5,4,1,-6,2,2,7]

 b=

-2    3    5    4    1    -6    2    2    7 

» [c,i,j]=unique(b)

с =





































-6



-2



1      2   3    4



5     7









6



1



5      8   2    4



3     9







j



=















2



5



7      6   3   1



4     4







»



a-[-2,



3.5:4.



l.-6:2,2.7;-2.3,5J









a



=















-2



3



5











4



1



-6











2



2



7











-2



3



5









»



c=uniqueCa. '



rows ' )









с



=















-2



3



5











2



2



7











4



1



-6










Содержание раздела