Иллюстрированный самоучитель по Matlab



Тригонометрические и обратные им функции - часть 3


В пакете расширения Signal Processing Toolbox есть специальные функции для генерации таких сигналов — square и sawtooth. — Примеч. ред.

]

х=-10:0.01:10;

subplot(2,2.1).plot(x.0.8*sin(x))

.x label('0.8*sin(x)') 

subplot(2.2,2).plot(x,0.8*sign(sin(x)))

.x1abel('0.8*sgn(sin(x))') 

subplot(2.2.3),plot(x.atan(tan(x/2)))

.xlabel('atan(tan(x/2))') 

subplot(2.2.4),plot(x,asin(sin(x)))

.xlabel('asin(sin(x))')

Соответствующие графики представлены на рис. 8.3.

Рис. 8.3.

Графики синусоиды, прямоугольных, пилообразных и треугольных колебаний

Дополнительный ряд графиков, полученных комбинациями элементарных функций, показан на рис. 8.4. Эти графики строятся следующим файлом-сценарием:

х=-10:0.01:10;

subplot(2.2.1).plot(x.sin(x).

A

3).x1abel('sin(xr3')

subplot(2.2.2).plot(x,abs(s1n(x)))

.xlabel('abs(sin(x))').axis([-10 10 -1 1]),

subplot(2.2,3),plot(x,tan(cos(x)))

.xlabel('tanCcos(x))') 

subplot(2.2.4).plot(x.csch(sec(x))),xlabeK'csch(sec(x))')

Рис. 8.4.

Графики периодических сигналов без разрывов

Эти графики неплохо моделируют сигналы, получаемые при выпрямлении синусоидального напряжения (или тока) и при прохождении синусоидальных сигналов через нелинейные цепи.




Содержание  Назад  Вперед