некоторая потеря точности при приведении
bessel h(nu.Z) — использует по умолчанию К = 1.
besselh(nu.l.Z.l) — масштабирует H
(1)
v
(z) с коэффициентом exp(-i*z).
besse1h(nu,2,Z.l) — масштабирует H
(2)
v
(z) с коэффициентом exp(+i*z).
[H.ierr] = besselhC...) — всегда возвращает массив с флагами ошибок:
ierr = 1 — запрещенные аргументы;
ierr = 2 — переполнение (возвращает Inf);
ierr = 3 — некоторая потеря точности при приведении аргумента;
ierr = 4 — недопустимая потеря точности: Z или nu слишком велики;
ierr = 5 — нет сходимости (возвращает NaN).
» D=[1.3+2i];F=[3.2]:[K.ierr]=besselk(F,D)
К =
7.1013 -0.0401 - 0.02851
lerr =
0 0
Естественно, что возможно построение графиков специальных функций.
В качестве примера рассмотрим m-файл-сценарий, приведенный ниже:
х=0:0.1:10;
y0=besselj(0.x);
y1=besselj(1.x):
y2=besselj(2.x);
y3=besselj(3.x);
plot(x,y0,.'-m',x,y1,'-r',x,y2,'-.k',x,y3,'-b')
legend('besselj(0.x)'. 'besselj(l.x)' ,'besse1j(2,x)'.
(
besselj(3,x)');
Рис. 9.1 иллюстрирует построение четырех функций Бесселя bessel j(n,x) для п-0, 1, 2 и 3 с легендой, облегчающей идентификацию каждой кривой рисунка.
Рис. 9.1.
Графики четырех функций Бесселя besselj(n,x)
Эти графики дают наглядное представление о поведении функций Бесселя, широко используемых при анализе поведения систем, описываемых линейными дифференциальными уравнениями второго порядка.
Содержание Назад Вперед