Иллюстрированный самоучитель по Matlab



             

Функции Бесселя


Линейное дифференциальное уравнение второго порядка вида

где v — неотрицательная константа, называется

уравнением Бесселя,

а его решения известны как

функции Бесселя.

Функции J

v

(z) и J_

v

(z) формируют фундаментальное множество решений уравнения Бесселя для неотрицательных значений п (это так называемые

функции Бесселя первого рода):

где для гамма-функции используется следующее представление:

Второе решение уравнения Бесселя, линейно независимое от J

v

(z), определяется как

и задает

функции Бесселя второго рода

Y

v

(z).

Функции Бесселя третьего рода

(функции Ханкеля) и функция Бесселя первого

и второго рода связаны следующим выражением:

bessel j(nu,Z) — возвращает функцию Бесселя первого рода, J

v

(z), для каждого элемента комплексного массива Z. Порядок ш может не быть целым, однако должен быть вещественным. Аргумент Z может быть комплексным. Результат вещественный, если Z положительно. Если nu и Z — массивы одинакового размера, то результат имеет тот же размер. Если любая входная величина — скаляр, результат расширяется до размера другой входной величины. Если одна входная величина — вектор-строка, а другая — вектор-столбец, результат представляет собой двумерный массив значений функции.

bessely(nu.Z) — возвращает функцию Бесселя второго рода, Y

v

(z).

  [J.ierr] = besse1j(nu,Z) и [Y.ierr] = bessely(nu.Z) функции всегда возвращают массив с флагами ошибок:

 ierr = 1 — запрещенные аргументы;

ierr = 2 — переполнение (возвращает Inf);

 ierr = 3 — некоторая потеря точности при приведении аргумента;

ierr = 4 — недопустимая потеря точности: Z или nu слишком велики;

ierr = 5 — нет сходимости (возвращает NaN).

Примеры:

» S=[2-51.4.7];T=[8.l.3]:g=besselj(T,S)

g=

0.1114-0.05081 -0.0660 -0.1676 

» S-[2-5i,4.7];T=[8.1.3J;[g.ierr]=bessely(T,S) 

g=

0.1871 - 0.03241 0.3979 0.2681 

ierr =

0 0 0

 besselh(nu,К,Z) — для К=1 или 2 возвращает функцию Бесселя третьего рода (функцию Ханкеля) для каждого элемента комплексного массива Z. Если nu и Z — массивы одинакового размера, то результат имеет тот же размер. Если одна из входных величин — скаляр, результат формируется по размеру другой входной величины. Если одна входная величина — вектор-строка, а другая — вектор-столбец, результат представляет собой двумерный массив значений функции.




Содержание  Назад  Вперед