Эллиптические функции и интегралы
Эллиптические функции Якоби определяются интегралом
и соотношениями
сn(u) = cos ф,
cn(u)=cosф,
dn(u) = (1-sin
2
ф)
1/2
,
аm(u) = ф.
В некоторых случаях при определении эллиптических функций используются модули k вместо параметра гл. Они связаны выражением
k = т =
sin a .
[SN.CN.DN] = ellipj(U.M) — возвращает эллиптические функции Якоби SN, CN и . DN, вычисленные для соответствующих элементов — аргумента U и параметра М. Входные величины U и М должны иметь один и тот же размер (или любая из них может быть скаляром).
[SN.CN.DN] = ellipj(U,M,to1) — возвращает эллиптическую функцию Якоби, вычисленную с точностью tol . Значение tol по умолчанию — eps; его можно увеличить, тогда результат будет вычислен быстрее, но с меньшей точностью. Пример:
» [SN.CN.DN]=ellipj([23.1].[0.5.0.2])
SN = | |||||||
474/719 |
1224/1481 | ||||||
CN = | |||||||
1270/1689 |
1457/2588 | ||||||
DN = | |||||||
399/451 |
538/579 | ||||||
Полные эллиптические интегралы первого и второго рода
определяются следующим образом:
ellipke(M) — возвращает полный эллиптический интеграл первого рода для элементов М.
[К.Е] = ellipke(M) — возвращает полные эллиптические интегралы первого и второго рода.
[К.Е] = ellipke(M.tol) — возвращает эллиптические функции Якоби, вычисленные с точностью tol. Значение по умолчанию — eps; его можно увеличить, тогда результат будет вычислен быстрее, но с меньшей точностью. Пример:
» [f.e]=ellipse([0.2.0.8])
f =
707/426 1018/451
е =
679/456 515/437
Для вычисления этих функций используется итерационный метод арифметико-геометрического среднего (см. детали в Reference Book по системе MATLAB).