Создание массивов со случайными элементами
р = randperm(n) — возвращает случайные перестановки целых чисел 1:n в векторе-строке. Пример:
» randperm(6)
ans =
243651
Функция rand генерирует массивы случайных чисел, значения элементов которых
равномерно
распределены в промежутке (0, 1):
rand(n) — возвращает матрицу размера nхn. Если n — не скаляр, то появится сообщение об ошибке;
rand(m.n) или rand([m п]) — возвращают матрицу размера mxn;
rand(m.n,p....) или rand([m n р...]) — возвращает многомерный массив;
rand(size(A)) — возвращает массив того же размера и размерности, что и А, с элементами, распределенными по равномерному закону;
rand (без аргументов) — возвращает одно случайное число, которое изменяется при каждом последующем вызове и имеет равномерный закон распределения;
rand(' state') — возвращает вектор с 35 элементами, содержащий текущее состояние генератора случайных чисел с равномерным распределением. Для изменения состояния генератора можно применять следующие формы этой функции:
rand('state' .s) — устанавливает состояние в s;
rand( 'state' ,0) — сбрасывает генератор в начальное состояние;
rand( 'state'. j) — для целых j, устанавливает генератор в j-е состояние;
rand( 'state' ,sum(100*clock)) — каждый раз сбрасывает генератор в состояние, зависящее от времени.
Пример:
» Y=rand(4,3)
Y=
0.9501 0.8913 0.8214
0.2311 0.7621 0.4447
0.6068 0.4565 0.6154
0.4860 0.0185 0.7919
Проверить равномерность распределения случайных чисел можно, построив большое число точек на плоскости со случайными координатами. Это делается с помощью следующих команд:
» X=rand(1000,1);
» Y=rand(1000,1);
» plot(X,Y,'.')
Полученный при этом график показан на рис. 10.1. Нетрудно заметить, что точки довольно равномерно распределены на плоскости, так что нет оснований не доверять заданному закону распределения координат точек.
![](1.gif)
Рис. 10.1.
Случайные точки с равномерным распределением координат на плоскости
Функция randn генерирует массив со случайными элементами, распределенными по нормальному закону с нулевым математическим ожиданием и среднеквадратическим отклонением, равным 1:
randn(n) — возвращает матрицу размера nхn. Если n — не скаляр, то появится сообщение об ошибке;
randn(m.n) или randn([m n]) — возвращают матрицу размера mxn;
randn(m,n,p,...) или randn([m n р...]) — возвращает массив с элементами, значения которых распределены по нормальному закону;
randn(size(A)) — возвращает массив того же размера, что и А, с элементами, распределенными по нормальному закону;
randn (без аргументов) — возвращает одно случайное число, которое изменяется при каждом последующем вызове и имеет нормальное распределение;
randn( 'state') — возвращает двухэлементный вектор, включающий текущее состояние нормального генератора. Для изменения состояния генератора можно применять следующие формы этой функции:
randn('state',s) — устанавливает состояние в
s;
randn('state' ,0) — сбрасывает генератор в начальное состояние;
randn('state', j) — для целых j устанавливает генератор в
J-e
состояние;
randn('state', sum( 100*clock)) — каждый раз сбрасывает генератор в состояние, зависящее от времени.
Пример:
>>Y=randn(4.3)
Y =
-0.4326 -1.1465 0.3273
-1.6656 1.1909 0.1746
0.1253 1.1892 -0.1867
0.2877 -0.0376 0.7258
Проверить распределение случайных чисел по нормальному закону можно, построив гистограмму распределения большого количества чисел. Например, следующие команды
» Y=randn(10000,1);
» hist(Y,100)
строят гистограмму (рис. 10.2) из 100 столбцов для 10 000 случайных чисел с нормальным распределением.
![](2a.gif)
![](2b.gif)
![](2c.gif)
Рис. 10.2.
Гистограмма для 10 000 нормально распределенных чисел в 100 интервалах
Из рисунка видно, что огибающая гистограммы действительно близка к нормальному закону распределения.
В пакете расширения Statistics Toolbox можно найти множество статистических функций, в том числе для генерации случайных чисел с различными законами распределения и определения их статистических характеристик.