Иллюстрированный самоучитель по Matlab


Вычисление собственных значений и сингулярных чисел


Во многих областях математики и прикладных наук большое значение имеют средства для вычисления собственных значений (собственных чисел, характеристических чисел, решений векового уравнения) матриц, принадлежащих им векторов

и сингулярных чисел. В новой версии MATLAB собственные вектора нормализуются, иначе, чем в предыдущих. Основной критерий: либо V'V=I, либо V'BV=I, где V — собственный вектор, I — единичная матрица. Поэтому результаты вычислений в новой версии, как правило, отличаются. Ниже дан список средств решения векового уравнения, реализованных в системе MATLAB.

Несимметрические матрицы могут быть плохо обусловлены при вычислении их собственных значений. Малые изменения элементов матрицы, такие как ошибки округления, могут вызвать большие изменения в собственных значениях.

Масштабирование —

это попытка перевести каждую плохую обусловленность собственных векторов матрицы в диагональное масштабирование. Однако масштабирование обычно не может преобразовать несимметрическую матрицу в симметрическую, а только пытается сделать (векторную) норму каждой строки равной норме соответствующего столбца. Масштабирование значительно повышает стабильность собственных значений.

  • [D.B] = balance(A) — возвращает диагональную матрицу D, элементы которой являются степенями основания 2, и масштабированную матрицу В, такую, что B=D\A*D, а норма каждого ряда масштабированной матрицы приближается к норме столбца с тем же номером;

  • В = balance(A) — возвращает масштабированную матрицу В. Пример использования функции balance:

» А=[1 1000 10000:0.0001 1 1000:0.000001 0.0001 1] 

А =

1.0е+004 *

0.0001 0.1000 1.0000

0.0000 0.0001 0.1000

0.0000 0.0000 0.0001 

» [F.G]=balance(A) 

F = 

1.0е+004 *

3.2768 0 0

0 0.0032 0

0 0 0.0000 

G =

1.0000 0.9766 0.0095

0.1024 1.0000 0.9766

1.0486 0.1024 1.0000

Величина, связывающая погрешность вычисления собственных значений с погрешностью исходных данных, называется




Начало  Назад  Вперед