Иллюстрированный самоучитель по Matlab

         

Решатели ОДУ


Для решения систем ОДУ в MATLAB реализованы различные методы. Их реализации названы

решателями

ОДУ.

Примечание

В этом разделе обобщенное название sol ver (решатель) означает один из возможных  численных методов решения ОДУ: ode45, ode23, ode113, ode15s, ode23s, ode23t , ode23tb, bvp4c или pdepe.

Решатели реализуют следующие методы решения систем дифференциальных уравнений, причем для решения жестких систем уравнений рекомендуется использовать только специальные решатели ode 15s , ode23s, ode23t. ode23tb:

ode45 — одношаговые явные методы Рунге-Кутта 4-го и 5-го порядка. Это классический метод, рекомендуемый для начальной пробы решения. Во многих случаях он дает хорошие результаты;

ode23 — одношаговые явные методы Рунге-Кутта 2-го и 4-го порядка. При умеренной жесткости системы ОДУ и низких требованиях к точности этот мето;. может дать выигрыш в скорости решения;

ode113 — многошаговый метод Адамса-Башворта-Мултона переменного порядка Это адаптивный метод, который может обеспечить высокую точность решения

ode23tb — неявный метод Рунге-Кутта в начале решения и метод, использующий формулы обратного дифференцирования 2-го порядка в последующем

Несмотря на сравнительно низкую точность, этот метод может оказаться более эффективным, чем ode15s;

ode15s — многошаговый метод переменного порядка (от 1 до 5, по умолчанию 5), использующий формулы численного дифференцирования. Это адаптивный метод, его стоит применять, если решатель ode45 не обеспечивает решения;

ode23s — одношаговый метод, использующий модифицированную формулу Розенброка 2-го порядка. Может обеспечить высокую скорость вычислений при низкой точности решения жесткой системы дифференциальных уравнений;

ode23t — метод трапеций с интерполяцией. Этот метод дает хорошие результаты при решении задач, описывающих колебательные системы с почти гармоническим выходным сигналом;

bvp4c служит для проблемы граничных значений систем дифференциальных уравнений вида y



'==

f(t,y), F(y(a), y(b), p)


=

0 (краевая задача);

pdepe нужен для решения систем параболических и эллиптических дифференциальных уравнений в частных производных, введен в ядро системы для поддержки новых графических функций Open GL, пакет расширения Partial Differential Equations Toolbox содержит более мощные средства.

Все решатели могут решать системы уравнений явного вида

у'

= F(£, y). Решатели ode15s и ode23t способны найти корни дифференциально-алгебраических уравнений M(t)y' = F(t,

у},,

где М называется матрицей массы. Решатели ode!5s, ode23s, ode23t и ode23tb могут решать уравнения неявного вида M(t,y)

у' = F(t, у).

И наконец, все решатели, за исключением ode23s, который требует постоянства матрицы массы, и bvp4c, могут находить корни матричного уравнения вида

M(t, у) у' - F(t, у).

ode23tb, ode23s служат для решения жестких дифференциальных уравнений . ode15s -жестких дифференциальных и дифференциально-алгебраических уравнений, ode23t -умеренно жестких дифференциальных и дифференциально-алгебраических уравнений.


Содержание раздела