Иллюстрированный самоучитель по Matlab

         

Signal Processing Toolbox


Мощный пакет по анализу, моделированию и проектированию устройств обработки всевозможных сигналов, обеспечению их фильтрации и множества преобразований.

Пакет Signal Processing обеспечивает чрезвычайно обширные возможности создания программ обработки сигналов для современных научных и технических приложений. В пакете используется разнообразная техника фильтрации и новейшие алгоритмы спектрального анализа. Пакет содержит модули для разработки линейных систем и анализа временных рядов. Пакет будет полезен, в частности, в таких областях, как обработка аудио- и видеоинформации, телекоммуникации, геофизика, задачи управления в реальном режиме времени, экономика, финансы и медицина. Основные свойства пакета:

моделирование сигналов и линейных систем;

проектирование, анализ и реализация цифровых и аналоговых фильтров;

быстрое преобразование Фурье, дискретное косинусное и другие преобразования;

оценка спектров и статистическая обработка сигналов;

параметрическая обработка временных рядов;

генерация сигналов различной формы.

Пакет Signal Processing — идеальная оболочка для анализа и обработки сигналов. В нем используются проверенные практикой алгоритмы, выбранные по критериям максимальной эффективности и надежности. Пакет содержит широкий спектр алгоритмов для представления сигналов и линейных моделей. Этот набор позволяет пользователю достаточно гибко подходить к созданию сценария обработки сигналов. Пакет включает алгоритмы для преобразования модели из одного представления в другое.

Пакет Signal Processing включает полный набор методов для создания цифровых фильтров с разнообразными характеристиками. Он позволяет быстро разрабатывать фильтры верхних и нижних частот, полосовые пропускающие и задерживающие фильтры, многополосные фильтры, в том числе фильтры Чебышева, Юла-Уолкера, эллиптические и др.

Графический интерфейс позволяет проектировать фильтры, задавая требования к ним в режиме переноса объектов мышью. В пакет включены следующие новые методы проектирования фильтров:


обобщенный метод Чебышева для создания фильтров с нелинейной фазовой характеристикой, комплексными коэффициентами или произвольным откликом. Алгоритм разработан Макленаном и Карамом в 1995 г.;

метод наименьших квадратов с ограничениями позволяет пользователю явно контролировать максимальную ошибку (сглаживание);

метод расчета минимального порядка фильтра с окном Кайзера;

обобщенный метод Баттерворта для проектирования низкочастотных фильтров с максимально однородными полосами пропускания и затухания.

Основанный на оптимальном алгоритме быстрого преобразования Фурье пакет Signal Processing обладает непревзойденными характеристиками для частотного анализа и спектральных оценок. Пакет включает функции для вычисления дискретного преобразования Фурье, дискретного косинусного преобразования, преобразования Гильберта и других преобразований, часто применяемых для анализа, кодирования и фильтрации. В пакете реализованы такие методы спектрального анализа как метод Вельха, метод максимальной энтропии и др.

Новый графический интерфейс позволяет просматривать и визуально оценивать характеристики сигналов, проектировать и применять фильтры, производить спектральный анализ, исследуя влияние различных методов и их параметров на получаемый результат. Графический интерфейс особенно полезен для визуализации временных рядов, спектров, временных и частотных характеристик, расположения нулей и полюсов передаточных функций систем.

Пакет Signal Processing является основой для решения многих других задач. Например, комбинируя его с пакетом Image Processing, можно обрабатывать и анализировать двумерные сигналы и изображения. В паре с пакетом System Identification пакет Signal Processing позволяет выполнять параметрическое моделирование систем во временной области. В сочетании с пакетами Neural Network и Fuzzy Logic может быть создано множество средств для обработки данных или выделения классификационных характеристик. Средство генерации сигналов позволяет создавать импульсные сигналы различной формы.


Содержание раздела