ИНТЕЛЛЕКТУАЛЬНЫЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ


Интеллектуальные информационные системы - стр. 19


Рис.1.11.  Решающая функция - “нейрон”

                Каждая такая функция, называемая по аналогии с элементарной единицей человеческого мозга - нейроном, отображает зависимость значения выходного признака (Y) от взвешенной суммы (U) значений входных признаков (Xi), в которой вес входного признака (Wi) показывает степень влияния входного признака на выходной:

                Решающие функции используются в задачах классификации на основе сопоставления их значений при различных комбинациях значений входных признаков с некоторым пороговым значением. В случае превышения заданного порога считается, что нейрон сработал и таким образом распознал некоторый класс ситуаций. Нейроны используются и в задачах прогнозирования, когда по значениям входных признаков после их подстановки в выражение решающей функции получается прогнозное значение выходного признака.

                Функциональная зависимость может быть линейной, но, как правило, используется  сигмоидальная форма, которая позволяет вычленять более сложные  пространства значений выходных признаков. Такая функция  называется логистической (рис.1.12).

Рис.1.12. Логистическая (сигмоидальная) функция

                Нейроны могут быть связаны между собой, когда выход одного нейрона является входом другого. Таким образом, строится нейронная сеть (рис. 1.13), в которой нейроны, находящиеся на одном уровне, образуют слои.

Рис.1.13. Нейронная сеть

                Обучение нейронной сети сводится к  определению связей (синапсов) между нейронами и установлению силы этих связей (весовых коэффициентов). Алгоритмы обучения нейронной сети упрощенно сводятся к определению зависимости весового коэффициента связи двух нейронов от числа примеров, подтверждающих эту зависимость.

                Наиболее распространенным алгоритмом обучения нейронной сети является алгоритм обратного распространения ошибки. Целевая функция по этому алгоритму должна обеспечить минимизацию квадрата ошибки в обучении по всем примерам:

, где

Ti - заданное значение  выходного признака по i - му примеру;




Начало  Назад  Вперед